Introduction

Isolation amplifiers are used in a wide variety of applications, including telecommunications, industrial, instrumentation and medical systems. The function of an isolation amplifier is to preserve or amplify a signal across a barrier of galvanic isolation.

The SLC800 is a linear optocoupler designed to provide excellent matching between the output signal and the servo feedback signal to the input. This matching enables the user to achieve excellent signal coupling through an isolation barrier.

This application note is intended to show how the SLC800 optocoupler can be used as the building block for an isolation amplifier circuit.

Description

The SLC800 consists of an input GaAs LED optically coupled to two photodiodes. Figure 01 below shows the pinout arrangement for the device. One of the photodiodes is typically used in a servo feedback arrangement to the SLC800 input via an operational amplifier. This is referred to as the servo photodiode. The other photodiode is used to feed the output circuitry, typically another op amp. This is referred to as the forward photodiode.

LEDs in general exhibit quite non-linear response with respect to time and temperature. The servo feedback is intended to linearize the LED output by taking advantage of op amp functionality to slightly adjust the LED forward current as warranted.

The servo gain, K_1, is measured as the ratio of the output current of the servo photodiode (I_{P1}) to the input current to the LED (I_F). The forward gain, K_2, is measured as the ratio of the output current of the forward photodiode (I_{P2}) to the input current of the LED.

$$K_1 = \frac{I_{P1}}{I_F} \quad (1)$$
$$K_2 = \frac{I_{P2}}{I_F} \quad (2)$$

An important parameter is the ratio between the forward gain and the servo gain. This is denoted as K_3, the transfer gain.

$$K_3 = \frac{K_2}{K_1} = \frac{I_{P2}}{I_{P1}} \quad (3)$$

For isolation amplifier circuits, it is important that K_3 remain nearly identically constant with varying levels of I_F. The relevant figure of merit is ΔK_3, the transfer gain linearity. Transfer gain linearity is a measure of the consistency of K_3, the transfer gain. It is measured as a percentage change in K_3 over varying I_F and temperature conditions. A typical value of ΔK_3 for the SLC800 is 0.1%.

The significance of the consistency of K_3 can best be explained by examining the SLC800 in a typical application circuit. In the next section, we examine the SLC800 in the photoconductive operation. Then, we look at the SLC800 in the photovoltaic operation. In short, K_3 determines how well we can reproduce the input signal at the output.

Photoconductive Operation

The following (shown in Figure 02) is a typical application circuit representing the SLC800 used in photoconductive mode:

Figure 01: SLC800 Pin Out Diagram

The SLC800 achieves superior linearity using two important functions:

1) The servo feedback setup which linearizes the LED’s output
2) Excellent gain matching between the two photodiodes

Figure 02: SLC800 in Photoconductive Operation
It is clear from Figure 02 that this application is restricted to the case of a unipolar photoconductive isolation amplifier. The discussion can be extended to the case of a bipolar photoconductive isolation amplifier; however, that is beyond the scope of this application note.

R₁ is chosen such that V_IN = I_P1 * R₁ for the maximum expected value of I_P1. Of course, this value depends on the maximum operating current of the input LED of the SLC800, I_F(MAX).

In other words, we must guarantee that R₁ is chosen such that: I_F ≤ I_F(MAX). Beyond I_F(MAX), the SLC800 will either not perform as well or fail to operate altogether. Typical rating for I_F(MAX) for the SLC800 is 15mA.

Example: Suppose V_IN = 2V, K₁ = 0.004 and I_F(MAX) = 15mA. What value should be chosen for R₁?

Solution: Rearranging equation 1 yields:

\[I_P1 = K1 * I_F(MAX) \] (4)
\[I_P1 = (0.004) * (15\text{mA}) \]
\[I_P1 = 60\mu\text{A} \]
\[R_1 = V_IN / I_P1 \] (5)
\[R_1 = 2 / (60\mu\text{A}) \]
\[R_1 = 33.3k\Omega \]

Now, we know from SLC800 operation that K₂ is closely related to K₁. In fact, K₃=K₂/K₁ is typically very close to 1. Let's assume that K₃=1; i.e., K₂=K₁.

Thus (rearranging equation 2):

\[I_P2 = K2 * I_F \] (6)
\[I_P2 = K1 * I_F \]
\[I_P2 = 60\mu\text{A} \]

Now we can choose R₂ to give us whatever value of V_OUT we desire. If we want V_OUT = V_IN, then set:

\[R_2 = V_IN/I_P2 \] (7)

Therefore:

\[R_2 = 2 / (60\mu\text{A}) \]
\[R_2 = 33.3k\Omega \]

More generally:

\[V_IN = I_P1 * R_1 \] (8)
\[V_OUT = I_P2 * R_2 \] (9)
\[V_OUT/V_IN = (I_P2 * R_2)/(I_P1 * R_1) \] (10)

Using equations 4 and 6, we find:

\[\frac{V_OUT}{V_IN} = \frac{(K2 * R_2)}{(K1 * R_1)} \] (11)
\[\frac{V_OUT}{V_IN} = \frac{(K3 * R_2)}{R_1} \] (12)

This simple design exercise shows that if we know K₃ we can choose R₁ and R₂ to determine the relationship between V_OUT and V_IN.

Of course, complicating factors exist which will have an effect on the output. As mentioned earlier, ΔK₃ due to I_F and temperature is an important parameter. This will determine the precision with which we will be able to replicate the input signal at the output.

Photovoltaic Operation

The following (shown in Figure 03) is the typical application circuit representing the SLC800 used in photovoltaic mode:

![Figure 03: SLC800 in Photovoltaic Operation](image)

It is clear from Figure 03 that this application is restricted to the case of a unipolar photovoltaic isolation amplifier. The discussion can be extended to the case of a bipolar photovoltaic isolation amplifier; however, that is beyond the scope of this application note.

Also, please note the apparent paradox with respect to the direction of the current through the photodiodes. Although perhaps counterintuitive, positive current indeed flows from cathode to anode due to the direction of the built-in electric field across the depletion region.

To analyze this circuit, we first note that:

\[I_P1 = V_IN / R_1 \] (13)
\[I_P1 = K1 * I_F \]
\[I_P2 = K2 * I_F \]

Example: Again, if we suppose V_IN = 2V, K₁ = 0.004 and I_F(MAX) = 15mA. What value should be chosen for R₁?
Solution:

\[R_1 = \frac{V_{IN}}{I_P1} \] \hspace{1cm} (14)
\[R_1 = \frac{V_{IN}}{(K1 \cdot I_{F(MAX))}} \] \hspace{1cm} (15)
\[R_1 = \frac{2}{[(0.004)(15mA)]} \]
\[R_1 = 33.3k\Omega \]

Now if we turn our attention to the output portion of the circuit, we see that:

\[I_{P2} = \frac{V_{OUT}}{R_2} \] \hspace{1cm} (16)

We are looking for an expression for \(\frac{V_{OUT}}{V_{IN}}\), so we can perform the following manipulation of equations:

\[\frac{I_{P2}}{I_{P1}} = \frac{K2}{K1} \] \hspace{1cm} (17)
\[\left(\frac{V_{OUT}}{R_2}\right) / \left(\frac{V_{IN}}{R_1}\right) = \frac{K2}{K1} \] \hspace{1cm} (18)
\[\frac{V_{OUT}}{V_{IN}} = \frac{(K2 \cdot R_2)}{(K1 \cdot R_1)} \] \hspace{1cm} (19)
\[\frac{V_{OUT}}{V_{IN}} = \frac{(K3 \cdot R_2)}{R_1} \] \hspace{1cm} (20)

The typical value of K3 is 1, however, as long as K3 is specified with extreme precision, \(R_1\) and \(R_2\) can be chosen to yield the desired relationship between \(V_{OUT}\) and \(V_{IN}\). For example, if K3 = 0.8, \(R_1 = 100\ k\Omega\), then we can choose \(R_2 = 125\ k\Omega\) if we want \(V_{OUT}\) to match \(V_{IN}\).

Frequency Response

(Photovoltaic vs. Photovoltaic Operation)

In the photovoltaic configuration, we would expect much lower bandwidth than in the photoconductive setup. However, this is offset by the improved linearity in the photovoltaic configuration.

In the photoconductive configuration, the SLC800 is designed for applications which operate up to 200 kHz. Beyond 200 kHz, the SLC800 was shown to exhibit loss of signal beyond the 3 dB level. In the photovoltaic operation, the SLC800 achieves better linearity and noise performance; however, bandwidth is limited to approximately 50 kHz.

This can be explained as follows: in the photoconductive configuration, we are reverse-biasing the p-n photodiodes, thereby creating a larger depletion region. A photodiode operates much like a parallel-plate capacitor, i.e., the capacitance of a photodiode is inversely related to the size of the depletion region. In the photovoltaic operation, the photodiodes are not biased at all, resulting in a narrower depletion region compared to the photoconductive situation. This results in better bandwidth performance in the photoconductive mode.

The tradeoff is that we achieve better drift performance in the photovoltaic mode. The downside of reverse-biasing the photodiodes is the generation of an undesirable leakage (dark) current. This dark current is significantly affected by changes in temperature. As a result, we lose some of our ability to preserve our input signal to the output in the photoconductive mode.

Conclusion

The SLC800, used in conjunction with complementary amplification circuitry, presents an elegant, low-cost alternative to traditional isolation amplifiers. The SLC800 takes advantage of SSO’s proprietary design to exhibit outstanding transfer gain characteristics. This presents an attractive solution for analog design engineers requiring the functionality of an isolation amplifier.

Visit www.ssousa.com or contact your local sales agent to learn more.